

1200V, 4A, 4.2Ω Max Trr ≤195nS

N-Channel FREDFET

Power MOS 8 $^{\text{Im}}$ is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

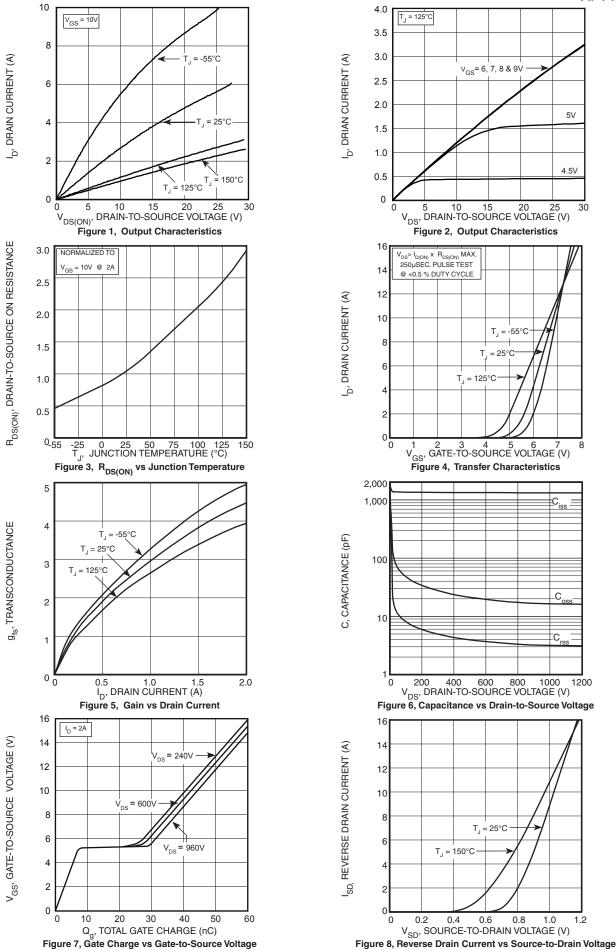
Symbol	Parameter	Ratings	Unit
	Continuous Drain Current @ T _c = 25°C	4	
l _D	Continuous Drain Current @ T _c = 100°C	3	Α
I _{DM}	Pulsed Drain Current ^①	15	
V _{GS}	Gate - Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy ^②	310	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	2	Α

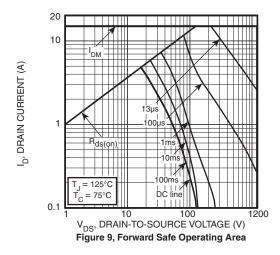
Thermal and Mechanical Characteristics

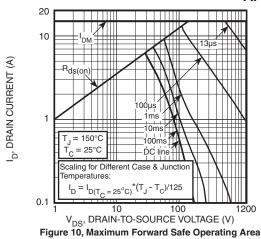
Symbol	Characteristic	Min	Тур	Max	Unit	
P_{D}	Total Power Dissipation @ T _c = 25°C	-	-	225	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance	-	-	.56	°C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface	-	.11	-	C/VV	
T_{J},T_{STG}	Operating and Storage Junction Temperature Range	-55	-	150	°C	
T_L	Soldering Temperature for 10 Seconds (1.6mm from case)	-	-	300		
\\/	Package Weight	-	0.07	-	OZ	
$W_{\scriptscriptstyle au}$		-	1.22	-	g	
Torque	Mounting Torque (TO-220 Package), 4-40 or M3 screw	-	-	10	in·lbf	
		-	-	1.1	N·m	

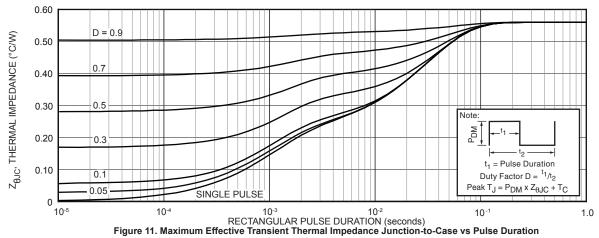
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
$V_{BR(DSS)}$	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$	1200			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA		1.41		V/°C
R _{DS(on)}	Drain-Source On Resistance [€]	$V_{GS} = 10V, I_{D} = 2A$		3.42	4.2	Ω
$V_{\rm GS(th)}$	Gate-Source Threshold Voltage	\/ \/ \ \ \ 0.5 \	2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_{D} = 0.5 \text{mA}$		-10		mV/°C
	Zero Gate Voltage Drain Current	$V_{DS} = 1200V$ $T_{J} = 25^{\circ}C$			250	
DSS		$V_{GS} = 0V$ $T_J = 125^{\circ}C$			1000	μA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

Dynamic Characteristics

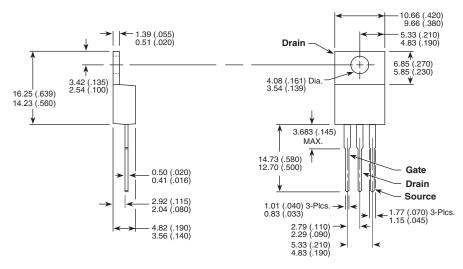

$T_{.l} = 25^{\circ}C$ unless otherwise specified


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
g_{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 2A$		4.5		S
C _{iss}	Input Capacitance			1385		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		17		
C _{oss}	Output Capacitance	1 1111112		100		pF
C _{o(cr)} ④	Effective Output Capacitance, Charge Related	\\ - 0\\ \\ - 0\\ \\		40		
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 800V$		20		
Q_g	Total Gate Charge			43		
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 2A,$ $V_{DS} = 600V$		7		nC
Q_{gd}	Gate-Drain Charge	V _{DS} = 000 V		20		
t _{d(on)}	Turn-On Delay Time			7.4		
t _r	Current Rise Time	Resistive Switching $V_{DD} = 800V, I_{D} = 2A$ $R_{G} = 10\Omega ©, V_{GG} = 15V$		4.4		
t _{d(off)}	Turn-Off Delay Time			24		ns
t _f	Current Fall Time	, v _{GG}		6.9		


Source-Drain Diode Characteristics


Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
I _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral	OD D			4	Α
I _{SM}	Pulsed Source Current (Body Diode) ^①	reverse p-n junction diode (body diode)	SU FIS			15 A	4
V _{SD}	Diode Forward Voltage	I _{SD} = 2A, T _J = 25°C, V _{GS} = 0V			0.8	1.3	V
4	Reverse Recovery Time Reverse Recovery Charge	$T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$ $T_{J} = 125^{\circ}C$ $T_{J} = 25^{\circ}C$ $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$ $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$ $T_{J} = 125^{\circ}C$	T _J = 25°C		170	195	nS
t _{rr}			T _J = 125°C		330	400	
0			T _J = 25°C		.370		μC
Q _{rr}			T _J = 125°C		.820	μ(μΟ
	Reverse Recovery Current		T _J = 25°C		4.90		А
Irrm			T _J = 125°C		5.40		A
dv/dt	Peak Recovery dv/dt	I _{SD} ≤ 2A, di/dt≤1000Aμs, V _{DD} = 800V, T _J = 125°C				20	V/ns

- Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
 Starting at T_J = 25°C, L = 155.0mH, R_G = 25Ω, I_{AS} = 2A.
 Pulse test: Pulse Width < 380µs, duty cycle < 2%.
 C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
 C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than V_{(BR)DSS}, use this equation: C_{o(er)} = -8.32E-8/V_{DS}² + 3.49E-8/V_{DS} + 1.30E-10.
 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)



TO-220 (K) Package Outline

e3 100% Sn Plated

Dimensions in Millimeters and (Inches)